

Millimeter-Wave Research Activities in Japan

Tsukasa Yoneyama, *Fellow, IEEE*

Abstract— Millimeter-wave research activities in Japan are reviewed from various points of view. It is shown that a quarter of the papers presented at microwave sessions in the two major annual conferences of the Institute of Electronics, Information and Communications Engineers (IEICE), Japan, are millimeter-wave research papers. Monolithic microwave integrated circuit (MMIC) devices such as high-power amplifiers (HPA's), low-noise amplifiers (LNA's), and mixers developed by several companies are compared in terms of state-of-the-art performances. Unique cost-reduction techniques are also discussed. Two types of car collision-avoidance radar systems have been constructed using nonradiative dielectric waveguide (NRD-guide) technology peculiar to Japan. Topics presented at Microwave Photonics '96, Japan, are reviewed, with emphasis on the Japanese contributions to this field.

I. INTRODUCTION

THIS paper is intended to give an insight into millimeter-wave research activities in Japan, particularly to readers abroad. Quasi-governmental and academic organizations for promoting millimeter-wave research and development will first be described. Then, state-of-the-art millimeter-wave techniques such as monolithic microwave integrated circuits (MMIC's), low-cost production techniques, and multichip module (MCM) techniques will be presented. Nonradiative dielectric waveguide (NRD-guide) technology will also be discussed since it shows great promise for practical applications.

Among many millimeter-wave applications systems which have been proposed to date, indoor local area networks (LAN's) and car collision-avoidance radar systems are nearing commercial availability. Another millimeter-wave application technology is millimeter-wave photonics, which may become a key technology for millimeter-wave mobile communications in the near future. In this connection, research presented at an international conference on microwave photonics (Microwave Photonics '96), held in Japan in December 1996, will be reviewed.

II. PROJECTS AND ORGANIZATIONS FOR MILLIMETER-WAVE RESEARCH AND DEVELOPMENT

A. Quasi-Governmental Projects and Organizations

The first big project involving millimeter waves in Japan was the construction of circular-waveguide communications systems under the leadership of NTT during the period from the early 1950's to the middle 1970's [1]. Immediately after

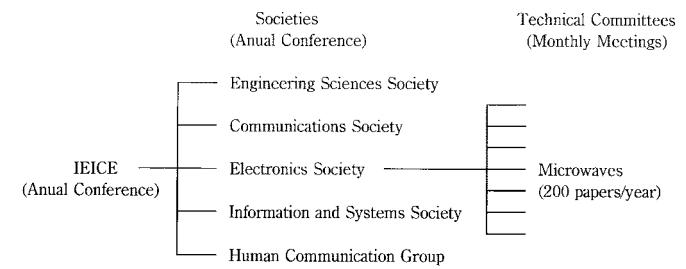


Fig. 1. Organization of IEICE.

the project was terminated, due to the advent of practical optical fiber, the Communications Research Laboratories (CRL), Koganei-shi, Tokyo, Japan, started millimeter-wave propagation and scattering experiments for the exploitation of the unused frequency spectrum [2]. Recent projects at CRL are research and development of millimeter-wave indoor LAN's [3], millimeter-wave/submillimeter-wave devices [4], millimeter-wave remote sensing [5], and millimeter-wave propagation and communication experiments using satellites [6].

Millimeter-wave R and D companies such as ATR, Seika-cho, Kyoto, Japan, Milliwave, Yokohama-shi, Kanagawa, Japan, and Robotics, Ichikawa-shi, Chiba, Japan, were established around 1990 with funds from the governmental Japan Key Technology Center, Minato-ku, Tokyo, Japan, and have been engaged in the development of fiber-optic millimeter-wave subcarrier techniques [7], MMIC's [8], remote-control systems for unmanned vehicles, and so on. Though two of them have already finished their projects, ATR (now ATRI) is still engaged in a new project for developing advanced communications technologies.

B. Millimeter-Wave Research Activities in IEICE

The organization which is most strongly concerned with millimeter-wave research activities in Japan is the Institute of Electronics, Information and Communications Engineers (IEICE). As shown in Fig. 1, the Institute consists of four societies and one group, the group being a mini-society with a limited number of members and limited budget, and each society has several technical committees. The Technical Committee on Microwaves, which is the most active for millimeter-wave research, belongs to the Electronics Society. The Institute and each Society organize a General Conference and a Society Conference on an annual basis, respectively, and each technical committee holds monthly meetings. Over 100 papers are presented at microwave sessions of General and Society Conferences and over 200 papers are presented at

Manuscript received October 15, 1997; revised March 4, 1998.

The author is with the Research Institute of Electrical Communication, Tohoku University, Sendai 980-77, Japan.

Publisher Item Identifier S 0018-9480(98)04033-2.

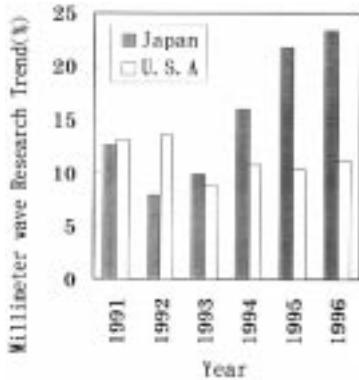


Fig. 2. Percentage of millimeter-wave papers presented at microwave sessions in IEICE conferences and MTT-S IMS.

monthly meetings of the Technical Committee on Microwaves every year.

Besides these domestic conferences and meetings, the microwave group in Japan is involved in the operation of a big international conference called the Asia-Pacific Microwave Conference (APMC), which is the Asia-Pacific region counterpart to International Microwave Symposium, (IMS) and European Microwave Conference (EuMC), and is held annually, in turn, by the regional countries. Japan has responsibility for APMC every four years and holds a three-day meeting called the Microwave Workshops and Exhibition (MWE) in years when the APMC is held outside of Japan. The efforts of many people in the field of microwave research and development from both the academic and industrial communities are united for the success of APMC and MWE.

C. Millimeter-Wave Research Trend

The trend of millimeter-wave research and development is considered, based on papers presented at the General and Society Conferences. Fig. 2 shows statistics which illustrate the fraction of millimeter-wave papers as a percentage of the total number of papers presented at microwave sessions. Comparison is made between Japan and the U.S. Data for the U.S. are taken from the IMS's held in recent years.

The drop seen in research activities in Japan around 1992 is, of course, due to the economical recession. In recent years, however, millimeter-wave research activities are recovering and a quarter of papers at the microwave sessions are related to millimeter waves. In the U.S., the percentage of millimeter-wave papers is fairly constant, but it should be noted that a considerable number of millimeter-wave papers are presented at the joint conference on MMIC's.

III. STATE-OF-THE-ART MILLIMETER-WAVE TECHNOLOGIES [9]

A. MMIC Devices

Table I shows state-of-the-art performances of MMIC devices developed by Japanese electronics companies from 1994 to 1996.

TABLE I
STATE-OF-THE-ART PERFORMANCE OF MMIC
DEVICES. (a) HPA's. (b) LNA's. (c) MIXERS

COMPANIES	PERFORMANCES	REMARKS
MITSUBISHI	Gain 4.7dB	AlGaAs/InGaAs PHEMT
	P_0 23.0dBm	with Optimized Gate Width
	f_0 60GHz	
TOSHIBA	Gain 42.6dB	4-stage Pre-Amp.
	P_0 29.0dBm	/4-stage Post-Amp.
	f_0 41.5-42.0GHz	
NEC	Gain >20dB	AlGaAs/InGaAs
	f_0 48-60GHz	HJFEMT 3-stage Amp.
	Gain 7.0dB	AlGaAs/InGaAs HBT
HITACHI	Gain 13dB	GaAs PHEMT
	f_0 60GHz	3-stage Amp.
	Gain 16dB	AlGaAs/InGaAs
MILLIWAVE/NEC	f_0 77GHz	/GaAs 3-stage Amp.
	Gain 14dB	AlGaAs/InGaAs HJFET
	P_0 17.1dBm	2-stage Amp.
	f_0 60GHz	
	Gain 9.1dB	30/60GHz Doubler
	P_0 16.8dBm	2-stage Amp.
	f_0 60GHz	

(a)

COMPANIES	PERFORMANCES	REMARKS
MITSUBISHI	Gain 8.1dB	AlGaAs/InGaAs PHEMT
	NF 1.8dB	
	f_0 50GHz	
TOSHIBA	Gain 42.2dB	PHEMT 4-stage Amp.
	NF 3.0dB	in Hermetically Sealed Package.
	f_0 51GHz	
NEC	Gain 7.6dB	InAlAs/InGaAs PHEMT
	NF 0.9dB	
	f_0 57GHz	
MILLIWAVE/NEC	Gain 12.0dB	AlGaAs/InGaAs/GaAs
	NF 5.6dB	PHEMT 3-stage Amp.
	Using MS @ W-band	
	Gain 10.0dB	
	NF 7.0dB	
	Using CPW @ W-band	
	Gain 11.5dB	AlGaAs/InGaAs
	NF 3.0dB	HJFET 2-stage Amp.
	f_0 59GHz	
	Gain 17.2-18.3dB	HJFET 3-stage Amp.
	NF 3.2-3.7dB	with Single Bias Supply
	f_0 58-62GHz	

(b)

COMPANIES	PERFORMANCES	REMARKS
SHARP	Lc 9dB	InGaP/GaAs HBT Single Mixer
	f_0 60GHz	
MITSUBISHI	Lc <16dB	Image Rejection
	f_0 54-60GHz	Harmonic Mixer
	Lc 8.4-12.5dB	InP HEMT Low Local
NTT	P_{1dB} -2-0dBm	Power Resistive Mixer
	f_0 55-60GHz	
	Lc 6±1dB	PHEMT Unipolar
NEC	P_{1dB} -7dBm	Resistive Mixer RF
	f_0 55-66GHz	Ampl., LO Amp., Mixer on Chip
	Lc 7.7dB	Subharmonically Pumping
MILLIWAVE/FUJITSU	f_0 40GHz	Mixer with Multiplier
	P_{1dB} 10dBm	
	f_0 10GHz	
	Gc >20dB	InGaP/InGaAs HEMT Mixer
	NF <3.6dB	with 4-stage LNA
	P_{1dB} 5dBm	
	f_0 59-61GHz	

(c)

1) *High-Power Amplifiers (HPA's)*: Mitsubishi, Kamakura-shi, Kanagawa, Japan, has developed an HPA with an output power of 23 dBm at 60 GHz by carefully optimizing the gatewidth of an AlGaAs/InGaAs pseudomorphic high electron-mobility transistor (PHEMT). Toshiba, Kawasaki-shi, Kanagawa, Japan, has obtained an output power of about 1 W by means of a four-stage preamplifier followed by a four-stage post-amplifier at 42 GHz. This HPA was developed for use in the short-range field pickup of television broadcasting at the Nagano Winter Olympics. NEC, Tsukuba-shi, Ibaragi, Japan, has used an AlGaAs/InGaAs heterojunction bipolar transistor (HBT) for the construction of a power amplifier with a gain of 7.0 dB at 94 GHz. Milliwave/NEC have demonstrated that the combination of a 30-GHz/60-GHz doubler and a two-stage amplifier can produce an output power of 16.8 dBm at 60 GHz.

2) *Low-Noise Amplifiers (LNA's)*: Mitsubishi reported a record minimum noise figure (NF) of 1.8 dB for GaAs high electron-mobility transistors (HEMT's) at 50 GHz. Immediately after Mitsubishi's achievement, Toshiba obtained a better NF of 0.9 dB at 57 dB using an InAlAs/InGaAs PHEMT. An LNA developed by NEC features a single-bias voltage supply.

3) *Mixers*: Mitsubishi's InP HEMT mixer requires only a low LO power for operation. NTT, Yokosuka-shi, Kanagawa, Japan, has fabricated a uniplanar type of mixer together with RF and LO amplifiers on one chip. The required LO power is as low as -7.0 dBm for operation over a 10-GHz frequency range from 55 to 66 GHz. A mixer developed by Milliwave/Fujitsu, Kawasaki-shi, Kanagawa, Japan, is backed up by a four-stage LNA, and has a conversion gain in excess of 20 dB, as well as an NF less than 3.6 dB.

B. Low-Cost Millimeter-Wave Manufacturing Techniques

Though MMIC technologies have been developed, they are still not practical for consumer applications because of the high cost required for production. A new keyword in the field of millimeter waves is "low cost." Two symposia were recently held at annual conferences to discuss low-cost millimeter-wave manufacturing techniques. Topics presented there are summarized below.

1) *Uniplanar MMIC's*: A novel technique for fabricating uniplanar MMIC's has been proposed at NTT Wireless Systems Laboratories, Yokosuka-shi, Kanagawa, Japan [10]. As shown in Fig. 3, it employs coplanar waveguides (CPW's) and slotlines instead of conventional microstrip lines. It has been proven that uniplanar MMIC's require a smaller linewidth and smaller line spacing than their microstrip counterparts. In addition, there is no need for polishing the bottom of the substrate and for making via holes in the uniplanar structure. Thus, a one-fifth reduction of both chip size and device cost can be achieved.

2) *Multilayer MMIC's*: It has been proposed at ATRI that the bump-bonding technique can be applied to multilayer MMIC's. Each layer is shielded by an upper and a lower metal sheet and is connected by bumps in a stacked manner, as shown in Fig. 4. This technique is useful for constructing multilayer MMIC's at low cost, as well as for reducing

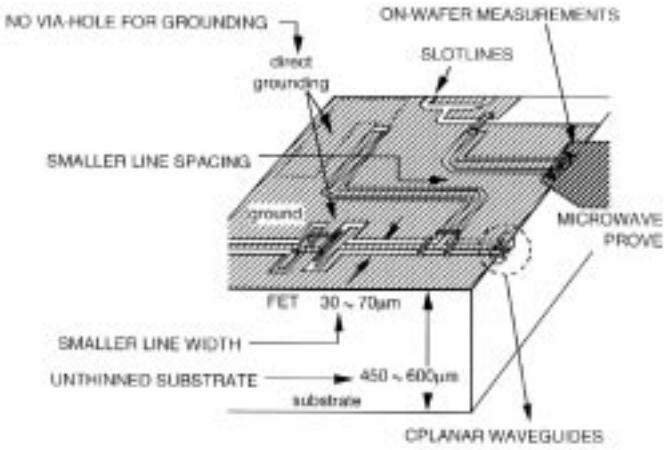


Fig. 3. Advantages of uniplanar MMIC.

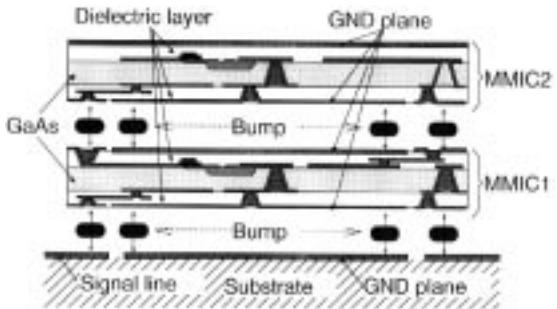


Fig. 4. Stacked multilayer MMIC.

parasitic reactances associated with interconnection between layers.

3) *Masterslice MMIC's*: The concept of masterslice MMIC's has been proposed by researchers at NTT Wireless Systems Laboratories [11]. The master array, which contains transistors, metal-insulator-metal (MIM) capacitors and resistors, is created in the bottom layer, and transmission lines are built in the upper layers, as shown in Fig. 5. MMIC's can be fabricated by making connections between transmission lines and necessary components selectively. By using this technique, a one-chip receiver has been built for microwave frequency. It may be expected that the masterslice technique can be extended to the millimeter-wave frequency range in the near future.

4) *Flip-Chip Technique*: The flip-chip technique is becoming increasingly popular and important in the field of millimeter waves. The Matsushita Group, Kawasaki-shi, Kanagawa, Japan, has developed a unique and innovative flip-chip technique which uses the micro-bump bonding (MBB) technique and benzocyclobutene (BCB) for the substrate instead of SiO_2 [12]. Transmission loss of the microstripline on BCB is one-third of that on its SiO_2 counterpart. No thermal bonding is needed for MBB. Bonding is carried out by placing gold bumps and transistor chips on microstrip lines, adding light-setting insulating resin, and finally, illuminating the resin by light, as shown in Fig. 6. The resin is shrunk and hardened by light illumination to hold bumps and chips in position. Thus, low-cost as well as low-parasitic connections can be achieved.

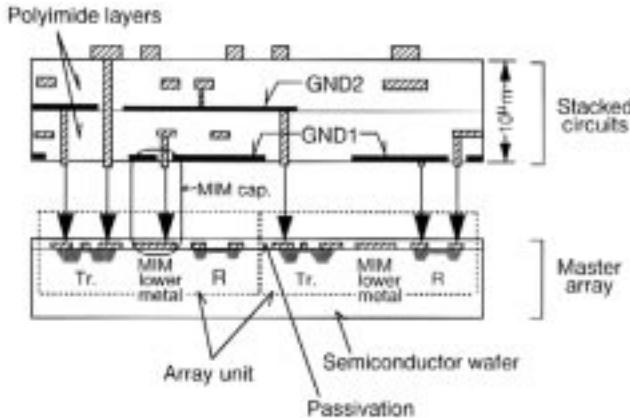


Fig. 5. Masterslice three-dimensional (3-D) MMIC.

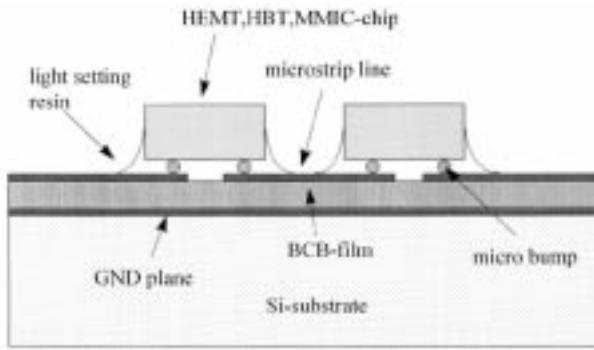


Fig. 6. Technique of micro-bump bonding.

simultaneously. This is an innovative low-cost millimeter-wave production technique recently developed in Japan.

5) Multichip Modules (MCM's): The MCM technique was discussed in comparison with hybrid integrated circuit (HIC) and MMIC techniques at a symposium held jointly with the Society Conference in 1996. It was discussed from the viewpoints of development cycle, performance, size, cost, and RF skills required. The general conclusion was that the MCM technique is preferable to the other two competitive techniques for all items at the subsystem level, though MMIC's have the advantage in small-size devices.

C. NRD-Guide Technology

NRD-guide is the rectangular dielectric waveguide inserted in a below-cutoff parallel-plate waveguide. Unwanted radiation, if any, is suppressed by the cutoff nature of the parallel-plate waveguide [13]. Though the NRD-guide is practical, it contains two nonradiating modes, one being the LSM_{01} mode and the other being the LSE_{01} mode. The LSM_{01} mode is chosen as the operating mode due to its smaller transmission loss, but its cutoff frequency is higher than that for the parasitic LSE_{01} mode. This causes trouble at curved sections of the waveguide because these two modes couple with each other if the bending radius is too small.

An innovation has recently been made by Murata Company Ltd., Nagaokakyo-shi, Kyoto, Japan. They have proposed a

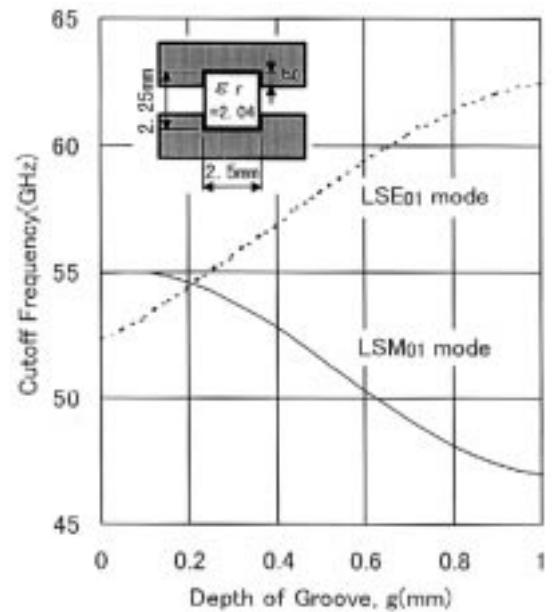


Fig. 7. Cutoff frequencies of hyper NRD-guide modes.

grooved NRD-guide to hold dielectric strips in position and have calculated cutoff frequencies of the two nonradiating modes against the depth of groove, as shown in Fig. 7. Crossover of the two dispersion curves takes place at a certain depth of groove. If the frequency and groove depth are chosen to be, say, 55 GHz and 0.6 mm, respectively, a single-mode operation is possible with the LSM_{01} mode. Thus, the coupling phenomenon at curved sections disappears and a very sharp bend can be created. This grooved NRD-guide is called the Hyper NRD-guide by Murata.

Actually, the grooved NRD-guide was previously studied both in Japan and China, but the grooves were found to be too shallow. An NRD-guide with shallow grooves is worse in performance than the normal type of NRD-guide because cutoff frequencies of the relevant two modes are closer to each other and coupling becomes more problematic.

IV. MILLIMETER-WAVE APPLICATIONS

Though many millimeter-wave applications systems have been proposed, indoor LAN's and car collision-avoidance radar systems have the greatest potential demand and are the most promising. A research project on millimeter-wave indoor LAN's is currently in progress at the CRL, while car collision-avoidance radar systems are being fabricated at several companies using MMIC and NRD-guide technology. Millimeter-wave photonics is a challenging and emerging technology, and is expected to produce entirely new millimeter-wave applications in conjunction with optoelectronic technology.

A. Millimeter-Wave Indoor LAN's

A large-scale facility for the millimeter-wave indoor LAN experiments has been built at CRL. By using NRD-guide transceivers with a bit rate in excess of 100 Mb/s at 60 GHz, intensive experiments have been carried out for investigating

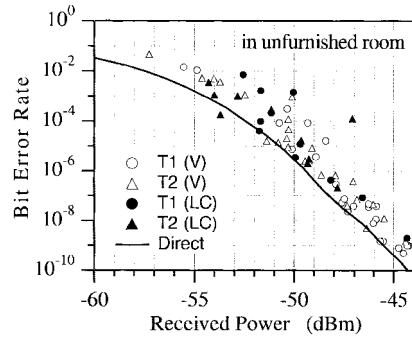
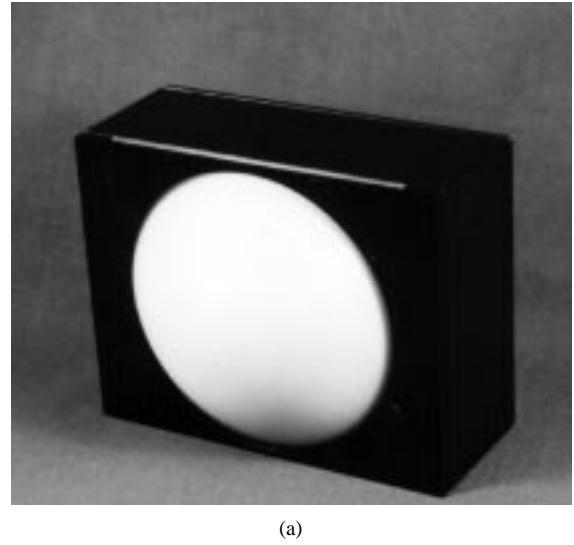
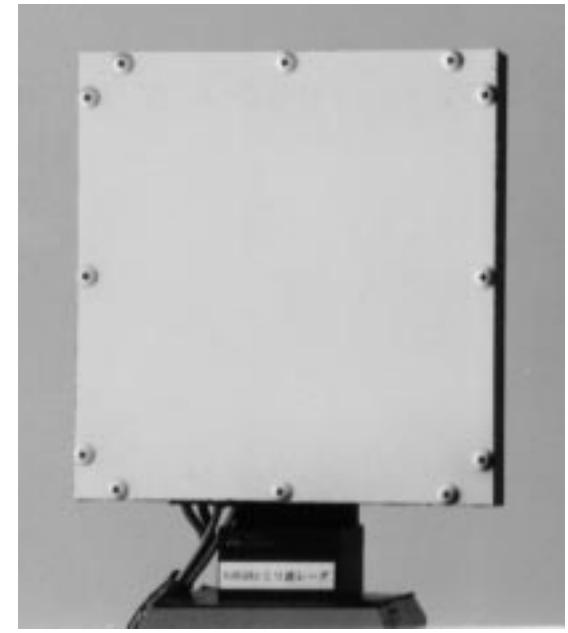


Fig. 8. Received power and bit error rate in indoor LAN. V: Vertical polarization. LC: Left-handed circular polarization. Direct: Direct connection of transmitter and receiver.

the feasibility of indoor LAN's under various propagation conditions [3]. Typical results of measurements indicate a close correlation between bit error rate and received power, suggesting that the larger the received power, the smaller the bit error rate, as shown in Fig. 8. The conclusion obtained from these experiments is that a bit error rate lower than 10^{-8} can be attained, provided that the received power is larger than -45 dBm under line-of-sight propagation.


B. Car Collision-Avoidance Radar

The practical use of car collision-avoidance radar is just around the corner. The Fujitsu group has developed a 60-GHz band front end for frequency modulation-continuous wave (FM-CW) radar, which features small transmission power achieved with the aid of the switching heterodyne technique [14]. NRD-guide technology is also a promising candidate for collision-avoidance radar systems. Murata Company Ltd. uses a hyper NRD-guide and a dielectric lens antenna to fabricate a compact FM-CW radar front end at 60 GHz, as shown in Fig. 9(a) [15]. An NRD-guide has also been applied to build a planar antenna which has sufficient space to implement a radar front end. The planar antenna with a built-in front end is smaller than the number plate of a car in area and is 10 mm in thickness, as shown in Fig. 9(b). The gain is 31 dBi, and the half-power beamwidths are 2.1° in the E-plane and 2.8° in the H-plane, respectively [16].


C. Millimeter-Wave Photonics

Millimeter-wave photonics is an interdisciplinary research field involving both millimeter-wave technology and optoelectronics. It includes the fiber-optic millimeter-wave subcarrier technique for microcell and picocell mobile systems and LAN's, optically controlled phased-array antennas, on-chip optical characterization of MMIC's, and so on. The Topical Meeting on Microwave Photonics was held in Japan in December 1996. Over 200 participants, including 50 from abroad, attended the meeting [17]. In order to give a brief insight into the meeting, papers presented by Japanese invited speakers will be reviewed.

1) *TV-Signal Reception*: The first topic presented by the Tokin Corporation Group, Tsukuba-shi, Ibaragi, Japan, was

(a)

(b)

Fig. 9. Car collision-avoidance radar systems with (a) lens antenna and (b) planar antenna.

concerned with TV-signal reception rather than millimeter waves [18]. A receiving antenna is provided with an electrooptic modulator having input and output optic fibers running to the satellite station. Optical waves in their round trip from the station are modulated by radio waves which are received by the antenna, and the radio waves are recovered with a carrier noise (C/N) ratio of about 50 dB at the station for delivery to each TV viewer. This technique can be applied to TV-signal relay in an isolated area. Since the antenna and the station are connected by optic fiber instead of coaxial cable, serious damage by lightning can be avoided.

2) *Inter-Satellite Optical Links*: Researchers at CRL have discussed technical bases and requirements for constructing inter-satellite optical links [19]. They also presented data obtained by the first ground-to-satellite communications experiments performed from December 1994 to July 1996 using

the ETS-VI satellite to study the feasibility of space laser communications.

3)Pulse Generation: Experiments on ultrashort pulse generation have been carried out by a research group from OKI Company, Ltd., Hachioji-shi, Tokyo, Japan, by using a newly fabricated mode-locked semiconductor laser [20]. A train of optical pulses with a duration of 2.3 ps has been produced from the laser diode at a high repetition rate of over 33 GHz. Subpicosecond pulses at high repetition rates of 400, 800 GHz, and 1.5 THz with an output power of 16 mW have also been obtained by harmonic passive mode locking. The timing jitter of the mode-locked laser is reduced to less than 1 ps by electrical- and optical-signal injection techniques.

4) Optical Devices: Ultrahigh-speed optical devices have been developed for future optical-fiber communications systems at NTT Opto-Electronics Laboratories, Atsugi-shi, Kanagawa, Japan [21]. These devices are a ridge-type LiNbO_3 Mach-Zehnder optical modulator, an electroabsorption multiple quantum well (MQW) semiconductor modulator, and a mushroom-mesa multimode waveguide photodetector. Performances of the fabricated optical devices are summarized as follows: the LiNbO_3 modulator exhibits a 100-GHz band, 5-V driving-voltage operation, and a 45-GHz band, 3.3-V driving-voltage operation depending on broad-band design and low-voltage design, respectively. The MQW semiconductor device has a 40-GHz band and a 1.8-V driving-voltage operation which has been found to be sufficient to conduct optical transmission experiments of 40 Gb/s. The photodetector has a 3-dB bandwidth of 110 GHz and an external quantum efficiency of 50% at 1.55 μm with a lensed fiber.

5) Modeling: The last topic presented by Koshiba and Tsuji [22] is concerned with design and modeling of millimeter-wave photonic devices. Using the quasi-TEM finite-element method (FEM) and the full-wave vector FEM (VFEM) for a millimeter-wave waveguide problem and the scalar FEM (SFEM) for an optical-waveguide problem, modulation characteristics of a traveling-wave (TW) LiNbO_3 optical modulator with a ridge structure were successfully simulated. For the first time, the VFEM solver was applied to the full-wave analysis of millimeter-wave propagation characteristics in TW optical modulators. These solvers are expected to be applicable to modeling of other millimeter-wave photonic devices such as semiconductor modulators and photodetectors.

Microwave/millimeter-wave photonics is an emerging technology in which millimeter waves are expected to play an important role.

V. CONCLUSIONS

Millimeter-wave research activities in Japan have been reviewed from a variety of viewpoints. Indoor LAN's and car collision-avoidance radar systems are the most promising millimeter-wave applications, but high-cost components and devices prevent their wide use. The key issue for the promotion of millimeter-wave consumer applications is the development of low-cost techniques. Various approaches being pursued in Japan were reviewed in this paper.

Some materials referred to in this paper are taken from the Digests of General and Society Conferences of the IEICE over

the last three years. Though they are written in Japanese, some of them are expected to appear in English soon.

REFERENCES

- [1] B. Oguchi, "Microwave and millimeter-wave communications in Japan," *IEEE Trans. Commun.*, vol. COM-20, pp. 717-725, Apr. 1972.
- [2] T. Manabe, T. Ihara, J. Awaka, and Y. Furuhama, "The relationship of raindrop-size distribution to attenuation experienced at 50, 80, 140, and 240 GHz," *IEEE Trans. Antennas Propagat.*, vol. AP-35, pp. 1326-1330, Nov. 1987.
- [3] T. Manabe, Y. Miura, and T. Ihara, "Effects of antenna directivity and polarization on indoor multipath propagation characteristics at 60 GHz," *IEEE J. Select Areas Commun.*, vol. 14, pp. 441-448, Mar. 1996.
- [4] N. Hiromoto, T. Itabe, S. Shibai, H. Matsuhara, T. Nakagawa, and H. Okuda, "Three-element stressed Ge:Ga photoconductor array for the infrared telescope in space," *App. Opt.*, vol. 31, no. 4, pp. 460-465, 1992.
- [5] H. Masuko, S. Ochiai, and Y. Irimajiri, "CRL 240 GHz and 278 GHz band radiometer/spectrometer system with superconducting mixers for monitoring ozone layer destruction," in *Proc. Asia-Pacific Microwave Conf.*, Tokyo, Japan, pp. 107-112, 1994.
- [6] Y. Suzuki, M. Shimada, Y. Arimoto, and T. Shiomi, "Experimental millimeter-wave satellite communication system," *AIAA J.*, 90-0813-CP, 1990.
- [7] E. Suematsu and N. Imai, "A fiber optic/millimeter-wave radio transmission link using HBT as direct photodetector and optoelectric upconverter," *IEEE Trans. Microwave Theory Tech.*, vol. 44, pp. 133-143, Jan. 1996.
- [8] T. Saito *et al.*, "60 GHz MMIC image-rejection down-converter using InGaP/InGaAs HEMT," presented at the IEEE GaAs IC Symp., 1995, paper H5.
- [9] *Proc. IEICE General Conf. and Electron. Soc. Conf. IEICE*, 1994, 1995, and 1996 (in Japanese).
- [10] T. Hirota, Y. Tarusawa, and H. Ogawa, "Uniplanar MMIC hybrids—A proposed new MMIC structure," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-35, pp. 576-581, June 1987.
- [11] T. Tokumitsu, M. Aikawa, and K. Kohiyama, "Three-dimensional MMIC technology: A possible solution to masterslice MMIC's on GaAs and Si," *IEEE Microwave Guided Wave Lett.*, vol. 5, pp. 411-413, May 1995.
- [12] H. Sakai, Y. Ota, K. Inoue, T. Yoshida, K. Takahashi, S. Fujita, and M. Sagawa, "A novel millimeter-wave IC on Si substrate using flip-chip bonding technology," in *IEEE MTT-S Int. Microwave Symp.*, May 1994, San Diego, CA, pp. 1763-1776.
- [13] T. Yoneyama and S. Nishida, "Nonradiative dielectric waveguide for millimeter-wave integrated circuits," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-29, pp. 1188-1192, Nov. 1981.
- [14] T. Saito, N. Okubo, Y. Kawasaki, O. Isaji, and H. Suzuki, "An FM-CW radar module with front-end switching heterodyne receiver," in *IEEE MTT-S Int. Microwave Symp. Dig.*, Albuquerque, NM, June, 1994, pp. 713-716.
- [15] Y. Ishikawa, T. Tanizaki, H. Nishida, and Y. Taguchi, "60 GHz band FM-pulse automotive radar front end using new type NRD guide and dielectric lens antenna," in *Topical Symp. MM-Waves*, Kanagawa, Japan, July 1997, pp. 70-71.
- [16] Y. Wagatsuma, Y. Daicho, and T. Yoneyama, "Millimeter-wave planar antenna for car warning radar," in *Topical Symp. MM-waves*, Kanagawa, Japan, July 1997, pp. 78-79.
- [17] *Int. Topical Meeting Microwave Photonics Tech. Dig.*, Kyoto, Japan, Dec. 1996.
- [18] M. Kondo, R. Toba, Y. Takano, K. Hageiwa, and H. Fujio, "Radio signal detection system using electrooptic modulator," in *Int. Topical Meeting Microwave Photonics Dig.*, Kyoto, Japan, Dec. 1996, paper WE2-1.
- [19] K. Araki and Y. Suzuki, "Inter-satellite link by lightwave," in *Int. Topical Meeting Microwave Photonics Dig.*, Kyoto, Japan, Dec. 1996, paper WE4-2.
- [20] Y. Ogawa and S. Arahira, "High repetition rate, ultrashort pulse generation using mode-locked semiconductor lasers," in *Int. Topical Meeting Microwave Photonics Dig.*, Kyoto, Japan, Dec. 1996, paper TH1-1.
- [21] O. Mitomi, K. Wakita, and K. Kato, "Millimeter-wave region optical devices," in *Int. Topical Meeting Microwave Photonics Dig.*, Kyoto, Japan, Dec. 1996, paper TH4-2.
- [22] M. Koshiba and Y. Tsuji, "Design and modeling of microwave photonics devices," in *Int. Topical Meeting Photonics Dig.*, Kyoto, Japan, Dec. 1996, paper TH4-1.

Tsukasa Yoneyama (S'60-M'64-SM'84-F'90) received the B.E., M.E. and Ph.D. degrees in electrical communication engineering from Tohoku University, Tohoku, Japan, in 1959, 1961, and 1964, respectively.

He was appointed a Research Associate and an Associate Professor at the Research Institute of Electrical Communication, Tohoku University, in 1964 and 1966, respectively, and a Professor in 1986, after serving as a Professor at the Faculty of Engineering, Ryukyu University, from 1984 to 1986. Working in the field of antennas, and microwave and millimeter-wave transmission lines, he has proposed and developed NRD-guide, which has been proven to be attractive for the use of millimeter-wave integrated circuits and antennas. He has published over 80 papers.

Dr. Yoneyama is a member of the Institute of Electronics, Information and Communication Engineers (IEICE), Japan, the Institute of Electrical Engineers (IEE), Japan, and the Institute of Television Engineers (ITE), Japan. He was chairman of the Research Committee of Microwaves, IEICE (1989-1991), chairman of IEEE MTT-S Tokyo Chapter (1991-1992), chairman of the investigation committee of millimeter waves, IEE (1990-1993), and has also served as chairman of the Steering Committee of the third APMC held in Tokyo, Japan, in 1990. From 1993 to 1995, he was a Distinguished Microwave Lecturer of IEEE MTT-S. He was awarded the Inada Memorial Prize, Best Publication Prize, Best Paper Prize, and Achievement Prize from the IEICE in 1963, 1983, 1990, and 1997, respectively, and the Shida Rinzaburo Memorial Prize from the Ministry of Posts and Telecommunication of Japan in 1995.